今天是 , 你是本站第位访问者
您的位置: 首页 > 研究团队 > 核心成员 > 正文
乔琰 副教授
发布时间2015-04-21 14:29:20     作者:

乔琰,副教授,硕士生导师,新加坡南洋理工大学博士,主要从事微生物燃料电池催化研究,电极材料研发以及相关器件设计,发表SCI论文50余篇,被引3100余次,其中两篇ESI高被引论文,获权国家发明专利3项。主持包括国家自然基金、重庆市自然基金等项目5项。

 

联系方式:yanqiao@swu.edu.cn

 

研究方向

1)微生物电极界面电子传递机理研究

2)纳米材料合成及其生物/电化学催化研究

3)微生物燃料电池在环境污染物及废弃物降解中的应用研究

4)微生物燃料电池微型器件研究

 

主要项目:

1)   重庆市基础科学与前沿技术研究一般项目,cstc2017jcyjAX0199,微生物燃料电池多孔阳极界面生物电催化机理研究,2017/07-2020/065万元,主持;

2)   中央高校基本业务费重点项目,XDJK2018B003,基于细菌纤维素的多孔碳纤维电极界面微生物电催化行为研究,2018/04-2020/1220万元,主持;

3)   中央高校基本科研业务费重点项目(XDJK2015B018):纳米结构阳极界面微生物胞外自介导电子传递机理研究,2015/05-2017/1210万,主持;

4)   国家自然科学基金青年项目,31200102,微生物燃料电池中细菌自介导胞外电子传递机理研究,2013/01-2015/1225万元,主持;

5)   重庆市国际科技合作项目, cstc2012gjhz902,新型功能化碳材料及其高效能量转化与存储系统,2012/03-2014/1250万元,参加。

 

代表论文

1)        L. Zou, Y. Huang, Z. Long*, Y. Qiao*, . On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J. Microb. Biot., 2019, 35, 9.

2)        X. Wu, Y. Qiao*, Z. Shi, W. Tang, C. M. Li*. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells. ACS Appl. Mater. Interfaces, 2018, 10, 11671-7.

3)        X. Wu, Z. Shi, L. Zou, C. M. Li*, Y. Qiao*. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells. J. Power Sources. 2018, 378, 119-24.

4)        X. Luo, W. Xie, R. Wang, X. Wu, L. Yu and Y. Qiao*, Fast Start-Up Microfluidic Microbial Fuel Cells With Serpentine Microchannel. Front. Microbiol. 2018, 9, 2816.

5)        Y.J. Qiao, Y. Qiao*, L. Zou, X.S. Wu, J.H. Liu, Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines, Bioelectrochem., 2017, 117, 34-39.

6)        L. Zou, Z. S. Lu, Y.H. Huang, Z.E Long, Y. Qiao*, Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells, J. Power Sources, 2017, 359, 549-555.

7)        L. Zou, Y. Qiao, C. Zhong, C. M. Li*, Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells, Electrochim. Acta, 2017, 229, 31-38.

8)        H.H. Zhang, Y. Qiao, Z.S. Lu*, Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate, ACS Appl. Mater. Interfaces 2016, 8, 32317-32323.

9)        L. Zou, Y. Qiao, Z. Y. Wu · X. S. Wu, J. L. Xie, S. H. Yu, J. Guo, C. M. Li*, Tailoring Unique Mesopores of Hierarchically Porous Structures for Fast Direct Electrochemistry in Microbial Fuel Cells, Adv. Energ. Mater., 2016, 6, 1501535.

10)    L. Zou#; Y. Qiao#; X.-S. Wu; C. M. Li*, Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources, 2016, 328, 143-150.

11)    H. Wei; X.-S. Wu; L. Zou; G.-Y. Wen; D.-Y. Liu; Y. Qiao*, Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J. Power Sources, 2016, 315, 192-198.

12)    H. Wei; X.-S. Wu; G.-Y. Wen; Y. Qiao*, Imidazolium Ionic Liquid Functionalized Carbon Nanotubes for Improved Interfacial Charge Transfer and Simultaneous Determination of Dihydroxybenzene Isomers. Molecules, 2016, 21, 617.

13)    Y. Qiao*, Y. J. Qiao, L. Zou, C.X. Ma, J. H. Liu, Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes, Bioresource Technol., 2015, 198, 1-6.

14)    Y. Qiao*, G. Y. Wen, X.S. Wu, L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells, RSC Adv., 2015, 5, 58921-58927.

15)    L. Zou#, Y. Qiao#, X.S. Wu, C.X. Ma, X. Li, C. M. Li*, Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysisJ. of Power Sources, 2015, 276, 208-214.

16)    Y. Qiao, X.S. Wu, Li, C. M. Li*, Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells, J. Power Sources, 2014, 266, 226-231.

17)    Y. Qiao, X.S. Wu, C.X. Ma, H. He, C. M. Li*, A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells, RSC Adv., 2014, 4, 21788-21793.

18)    X. Li, G. Z. Zhong, Y. Qiao*, J. Huang, W. H. Hu, X. G. Wang, C. M. Li*, A high performance xylose microbial fuel cell enabled by Ochrobactrum sp 575 cells, RSC Adv., 2014, 4, 39839-39843.

19)    B. Y. Chen, C. C. Hsueh, S. Q. Liu, J. Y. Hung, Y. Qiao, P. L. Yueh, Y. M. Wang, Unveiling characteristics of dye-bearing microbial fuel cells for energy and materials recycling: Redox mediators, Int. J. Hydrogen Energ, 2013, 38, 15598-15605.

20)    J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song, C. M. Li*, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresource Technol., 2012, 114, 75-280,.

21)    J. Liu, Y. Qiao, Z.S. Lu, Zhi SongSong, Hao, Li, Chang Ming*, Enhance electron transfer and performance of microbial fuel cells by perforating the cell membrane, Electrochem. Comm., 2012, 15, 50-53.

22)    He, Z.M., J. Liu, Y. Qiao, C.M. Li*, and T.T.Y. Tan, Architecture Engineering of Hierarchically Porous Chitosan/Vacuum-Stripped Graphene Scaffold as Bioanode for High Performance Microbial Fuel Cell. Nano Letters, 2012, 12(9): 4738-4741.

23)    Y. Qiao, C. M. Li*: Nanostructured catalysts in fuel cells. J. Mater. Chem., 2011, 21 (12): 4027-4036.

24)    Y. Qiao, S.J. Bao, C. M. Li*: Electrocatalysis in Microbial Fuel Cells - From electrode material to direct electrochemistry. Energ. & Environ. Sci., 2010, 3, 544 - 553.

25)    Y. Qiao, C.M. Li*, Z.S. Lu, H. Ling, A. Kang, and M.W. Chang, A time-course transcriptome analysis of Escherichia coli with direct electrochemistry behavior in microbial fuel cells. Chem. Commun., 2009,  41, 6183-6185.

26)    K.J. Xiang#, Y. Qiao#, C.B. Ching, and C.M. Li*, GldA overexpressing-engineered E. coli as superior electrocatalyst for microbial fuel cells. Electrochem. Comm., 2009. 11, 1593-1595.

27)    Y. Qiao, C.M. Li*, S.J. Bao, Z.S. Lu, and Y.H. Hong, Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. 2008, 11, 1290-1292.

28)    Y. Qiao, S.J. Bao, C.M. Li*, X.Q. Cui, Z.S. Lu, and J. Guo, Nanostructured polyanifine/titanium dioxide composite anode for microbial fuel cells. Acs Nano, 2008, 2, 13-119.

29)    Y. Qiao, C.M. Li*, S.J. Bao, and Q.L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources, 2007, 170, 79-84.

 

获批专利

1) 苍白杆菌在制备微生物燃料电池中的应用及其装置和方法,发明专利,201310629966.7., 李鑫;乔琰;钟国祯;李长明;王行国;

2) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用,发明专利,201410298637.3.,乔琰;吴小帅;李长明

3) 碳毡/碳纳米管/磷钼酸复合材料的制备方法及其产品和应用,发明专利,201610246282.2,乔琰,卫嬛。